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ABSTRACT: Using Brownian dynamics simulation, we determine chain
dimensions in an entangled polymer melt undergoing startup shear at a rate
lower than the reciprocal of the Rouse time yet higher than the reciprocal
reptation time. Here the tube model expects negligible chain stretching. In
contrast, our simulation shows the deformed coil to conform closely to affine
deformation. We find that the total number of entanglements decreases with
increasing shear. Remarkably, up to many Rouse time, the decline in the number
of initial entanglements is slower than that under the quiescent condition. These
results point to fundamental deficiencies in the molecular picture of the tube
model for startup shear.

Characterizing chain entanglement in concentrated sol-
utions and melts of long polymers and elucidating its

dynamic evolution under external deformation are some of the
greatest challenges in polymer physics.1−5 Many theoretical
attempts have been made in the past,6−9 and the reptation-tube
theory has emerged as the most widely accepted model to
characterize linear viscoelastic properties as well as nonlinear
rheological behavior of entangled polymers.6−9 The concept of
tube-like confinement has also been extended to treat dynamics
of entangled semiflexible chains.10 The tube model simplifies
the complex, many-body effects of molecular interpenetration
in terms of a smooth tube-like confinement on a test chain. By
construction, the intermolecular interaction of the test chain
with the surrounding chains is reduced to its frictional contact
with the fictitious tube. Free of entanglement inside the tube,
the test chain is assumed to execute Rouse dynamics.11

Predictions of the tube model for equilibrium dynamics and
linear rheological properties appear to be consistent with
experiment.12,13 Moreover, the existence of a confining tube
along with its attributes as envisioned by the tube model has
been supported by computer simulation.14−18

The physical basis for extending the tube model to large
deformation is less obvious. Since the tube model does not
describe how chain entanglement arises, it cannot address the
question of when, how, and why disentanglement may occur
due to fast external deformation. While a number of the
predictions of the tube model, such as the stress overshoot in
startup shear and strain softening after a large step shear, are in
apparent agreement with macroscopic rheological measure-
ments, several authors have raised questions about the

microscopic foundation of the tube model.19−21 More
importantly, particle-tracking velocimetric observations in the
laboratory of S.-Q. Wang have revealed new phenomenology
that is difficult for the tube model to explain.22−24 On the other
hand, accepting its validity, Adams and Olmsted25 tried to
depict the particle tracking velocimetric (PTV) observations
with the tube model. In a different but related context, Sussman
and Schweizer have suggested in the case of the dynamics of
entangled rods that the tube-like confinement is of finite
strength26 and disentanglement can take place in the form of
polymer delocalization.27,28 Because the tube model reduces
the dynamics of the entanglement network to a single-chain
picture, representing the many-body intermolecular interactions
in terms of a tube-like confinement on a test chain, it envisions
no barriers against any chain retraction on the Rouse time scale.
Consequently, by construction the tube model decouples chain
stretching from chain orientation. For example, after a step
strain, chain retraction on Rouse time τR is followed by chain
orientation on the time scale of reptation τd. However,
experiments by Archer suggested that chain retraction
continues to times much longer than the Rouse time.29

In this Letter, we report results from computer simulation
that aim to explicitly elucidate when chain retraction occurs
upon startup shear. We consider shear rate γ ̇ that is higher than
the reciprocal reptation time, 1/τd, but much lower than the
reciprocal Rouse time, 1/τR; i.e., the Weissenberg number Wi =
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γτ̇d > 1, and yet the Rouse−Weissenberg number WiR = γτ̇R ≪
1. In this regime, the tube model predicts only orientation of
the primitive chain since the degree of chain stretching is given
by WiR ≪ 1. In contrast, our Brownian dynamics (BD)
simulations show substantial chain stretching and nearly affine
deformation on time scales significantly longer than τR during
startup shear. Furthermore, by a primitive path analysis (PPA),
we find that the total number of entanglements decreases over
time or elapsed strain. The percentage of initial entanglements
decreases even faster. Remarkably, up to many Rouse time τR,
the decline in the number of initial entanglements during
startup shear is slower than that under the quiescent condition,
suggesting that the stretched network hinders disentanglement.
The rest of this Letter is organized as follows. After a brief
review of the theoretical prediction from the tube model
concerning the chain dimension as a function of the elapsed
strain γ = γṫ, we present our BD simulation method.
Subsequently, we report the simulation results on both the
chain conformation and the state of entanglement. We
conclude with a discussion of the implications of these results.
According to the tube model,6 upon startup shear under the

condition of τd
−1 ≪ γ ̇ ≪ τR

−1, there would be only chain
orientation and no chain stretching; the left half of the
inequality indicates that the chain will be oriented due to the
tube confinement, while the right half of the inequality ensures
that there is little chain stretching since chain relaxation in the
tube takes place on times scale of the Rouse time. Without
stretching in the contour length of the tube (the primitive
chain), the effect of the deformation is a simple reorientation of
the unit tangent vector u ⃗ of the primitive chain by the strain
tensor E to (E·u ⃗)/|E·u ⃗|, where E = (1,γ,0; 0,1,0; 0,0,1) for
simple shear. This reorientation leaves the overall mean-square
radius of gyration ⟨Rg

2⟩ unaltered from its equilibrium value
⟨Rg0

2 ⟩, while its components are changed to (see Supporting
Information).
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The average in eq 1 can be written in spherical polar
coordinates as angular integrals

where f(φ) = 2γ sin φ cos φ + γ2 sin2 φ; g(φ,θ) = sin3 θ/[1 +
f(φ)sin2 θ]. Results of these integrals do not have analytical
forms but can be numerically evaluated. For comparison, we
also list the results for the affine deformation. In the case of
affine deformation, from ⟨Rgα
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We now use computer simulation to test whether ⟨Rgi
2 ⟩ follows

the tube model prediction in eq2 or conforms more closely to
the affine deformation results of eq 3.
Our BD simulations are performed under conditions of fixed

temperature and volume. The system consists of 141 chains of
uniform length N = 500 at a bead density of ρ = 0.85σ−3. The
initial states are prepared by Lattice Monte Carlo (MC)30

sampling allowing chain crossing, which considerably reduces
the time required for system equilibration. We numerically
solve the BD equations of motion and further equilibrate the
system under BD for a time on the order of τd. We generate
shear by displacing the upper wall with a fixed velocity u ⃗ in the
x-direction relative to the stationary bottom wall. All monomers
within a distance less than σ from the two walls are
permanently adhered to the walls (to ensure perfect nonslip
of the walls). Periodic boundary conditions are only imposed in
the x- and z-directions. The simulation box is set at Lx = Ly =
4Rg and Lz = 3Rg, where Rg = ⟨Rg0

2 ⟩1/2. In the evaluation of the
chain conformation and entanglements, all data reported are
taken by averaging over 40 independent samples; only nonwall-
tethered chains are taken into account (there are about 75 such
free chains in each sample).31

We use the bead−spring model as in the work of Kremer and
Grest.14 The excluded volume interaction is accounted for by
the repulsive part of the Lennard-Jones potential with energy
parameter ε and length scale σ, obtained by truncating and
shifting the Lennard-Jones potential at the distance cutoff rc =
21/6σ.14,32 Chain connectivity is modeled by the finitely
extensible nonlinear elastic (FENE) potential between adjacent
monomers, with a spring constant k = 30 in reduced unit, and
fully stretched bond length R0 = 1.5σ, leading to an average
bond length of 0.97σ.14,32 To fully capture polymer
entanglement, it is crucial that bonds do not cross each
other. In standard simulation of polymers, crossing is rare
except in strongly deformed polymer networks.32,33 For the
large deformations studied in this work, detecting and
preventing bond crossings is critical. We follow the approach
of Kumar and Larson,34 who developed a method that uses
spring−spring repulsion to prevent the passage of two springs
through each other. Here, the spring−spring repulsive potential
Urep is chosen as
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where D is the distance of closest approach between two
closeby springs. Since BD simulations are carried out by
integrating force balances on beads, the repulsive spring force is
converted into bead forces by a simple lever rule relation.34

Having specified the interaction potentials, the BD equation
of motion for bead i is

Here Ui is the sum of all the interaction potentials discussed
above; μ is the friction coefficient; and fi⃗(t) is a random force
related to μ by the fluctuation dissipation theorem ⟨fi⃗(t)fj⃗(t′)⟩ =
2μkBTδijδ(t − t′)I, where I is the unit tensor. The equations are
integrated with a time step Δt = 0.006τ, where τ is the unit of
time defined as τ = (mσ2/ε)1/2. We present our results in
reduced units in which σ = ε = m = 1 and the temperature is
kBT = 1.0, and the friction coefficient is taken to be μ = 0.5τ−1.
For N = 500, the chains are well entangled. The Rouse time

τR is determined from τR = (1/3π2)·6⟨Rg0
2 ⟩/DR, where DR is the

Rouse self-diffusion constant, which is obtained by extrap-
olation of simulation data of nonentangled polymers.6 To
evaluate the terminal relaxation time (reptation or disengage-
ment time, τd), we make use of the relation τd/τR = DR/Ds,
where Ds is the actual self-diffusion constant.6 Numerically
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consistent with the results of Kremer and Grest,14 we find
⟨Rg0

2 ⟩, Ds, DR, τR, and τd are 138, 8.67 × 10−6, 1.3 × 10−4, 2.15 ×
105, and 3.23 × 106, respectively.35

To quantify the evolution of entanglements during
deformation, we adopt a PPA introduced by Sukumaran et
al.32 based on Edwards’s definition of a primitive path. At any
given time, we freeze the conformation of all the chains in the
system and apply the PPA to examine the number of chain
strands that hinders the lateral motion of a test chain. This
number is averaged over all chains and is defined as the number
of entanglements per chain. We follow the time dependence of
this quantity normalized by its value at equilibrium, as a means
to gauge how the deformation alters the topological
interactions in the entangled polymer melt.
Unlike macroscopic experiments, computer simulation

provides direct information on the molecular conformation of
the chains during startup shear. In Figure 1 we show snapshots

of several representative chains in the middle of the simulation
box before and during shear. The comparison between Figure
1(a) and 1(b) clearly indicates significant chain stretching and
alignment in the XY plane. On the other hand, the chain
conformation appears relatively isotropic in the YZ plane. In
this Letter, we fix the shear rate at (6τR)

−1, so that a shear strain
of 200% takes 12τR ≫ τR. The corresponding Weissenberg
number Wi = γτ̇d is between 2.5 and 3.5 depending on the
definition of the reptation time used. We have verified that at
this shear rate the actual velocity profile varies linearly in the
gradient direction at all stages of the simulation. Because chain
retraction takes place on the time scale of order τR, the tube
model would predict no significant increase in chain stretching
beyond a strain of 1/6. We have also performed simulations
with strain rates (8τR)

−1 and (4τR)
−1; the results are

qualitatively similar.
We quantify the information contained in Figure 1 by

measuring the mean square radius of gyration ⟨Rg
2⟩ as a function

of the elapsed strain γ during the startup shear; the results are
shown in Figure 2. Up to a strain of 1.5, the increase in ⟨Rg

2⟩
follows closely the behavior expected of affine deformation. In
contrast, the tube model predicts a negligible increase in ⟨Rg

2⟩.
At higher shear strains, the increase of the overall coil size slows
down, deviating downward from the affine deformation limit.

Before presenting additional information to shed light on
why the coil size ceases to increase affinely at larger strains, we
analyze the projections of the chain conformation parallel and
perpendicular to the shearing direction. Figure 3 shows more

detailed information on the chain deformation during the
startup shear. These results confirm that the chain deformation
is approximately depicted by the limit of affine deformation up
to a shear strain of γ = 2. It is interesting to note that the tube
model depicts very different projections along the velocity
gradient and the vorticity directions as shown, respectively, by
the dashed and continuous curves in Figure 3(b). In contrast,
the simulation data show surprisingly little difference between
⟨Rgy

2 ⟩ and ⟨Rgz
2 ⟩, conforming closely to the depiction based on

affine deformation.
Our computer experiments also yield insight into how to

define chain entanglement and how to follow its evolution
during startup shear. Such questions are intimately related to
another set of important questions: (a) when does an entangled
polymer cease to deform affinely, and (b) how does chain
disentanglement occur? Specifically, why and how does chain

Figure 1. Snapshots of several representative chains in the entangled
melts. (a) At equilibrium. (b) At 200% strain during startup shear
under the condition of WiR = 1/6.

Figure 2. Comparison of stretching factor of the mean square radius of
gyration of the entangled polymer chains during startup shear under
the condition of WiR = 1/6 from the simulation relative to the affine
deformation depiction and the prediction of the tube model.

Figure 3. Components of the gyration tensor of the entangled
polymer chains. (a) The x-component. (b) The y- and z-components.
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deformation eventually become nonaffine as seen in Figures 2
and 3? The analysis shown in Figure 4 gives us some idea.

Plotted in Figure 4(a) are two sets of data, one indicating the
percentage of the initial entanglements (per chain) that survive
at the various stages during the startup shear and the other
showing the overall amount of entanglements normalized by
the number Z0 of entanglements per chain in equilibrium.
Unlike previous computer simulations that evaluate chain
entanglement by PPA indiscriminatively, our analysis differ-
entiates new from old entanglements by keeping track of which
surrounding chains form entanglement (as defined by PPA)
with a given test chain. In passing, we note that such
quantification of chain entanglement as shown in Figure 4(a)
is not available within the tube model framework. The tube
model does not even address the question of whether and how
the lack of affine deformation beyond τR amounts to chain
disentanglement since the tube confinement is always perceived
to be present.
It is not surprising that the increase of the overall coil size

could initially be depicted by affine deformation, although some
original entanglements have been replaced by new ones.
However, as the overall level of chain entanglement decreases,
the molecular deformation becomes more nonaffine as shown
in Figures 2 and 3. In other words, the downward deviation of
the squares from the continuous curve of affine deformation in
Figure 2 directly correlates with the loss of chain entanglement
depicted by the squares in Figure 4(a). Finally, we compare the
loss of the original entanglements over time during the startup
shear with that in quiescence due to the chain diffusion in
Figure 4(b). Remarkably, we see that the initial entanglements
disappear faster in quiescence than in shear. Our interpretation
is that the initial affine deformation of the entanglement
network actually tightens up the intermolecular coupling and
makes it more difficult to lose entanglement relative to the loss

of entanglements by diffusion in quiescence. In the later stage
the startup shear does accelerate the disappearance of the
original entanglements relative to the renewal rate in
quiescence, reflecting the effect of convection.
Our BD simulations have revealed remarkable clues about

chain entanglement in the presence of startup shear. Figures
1−4 show that even for a rather small Rouse−Weissenberg
number WiR = 1/6 a chain undergoes considerable stretching
well past the Rouse time. In other words, the chains continue to
deform in a quasi-affine manner, suggesting that the
construction of the tube model is unrealistic. Indeed, the
smoothed-out description of intermolecular coupling in
entangled polymers by a tube has difficulty in both identifying
and quantifying chain entanglements. In other words, unable to
explicitly account for the active role of intermolecular
interactions in the description of polymer entanglement, the
tube model could only envision chain retraction leading to
unrealistically reduced chain dimensions.
In conclusion, chain entanglement actually involves active

localized intermolecular interactions that may be perceived as
network junctions. To describe its dynamic evolution, we have
to keep track of the removal and reformation of these
intermolecular coupling junctions, which is often popularly
known as entanglement points. A realistic theoretical description
of polymer entanglement under large deformation has to
characterize the dynamics of these entanglement points and to
address the fundamental question of when the chain
deformation ceases to be affine and when the system starts to
yield, i.e., to transition from dominantly elastic deformation to
massive irrecoverable deformation. Our computer experiments
reveal significant chain stretching during a startup shear even at
such low rates where the tube model anticipates only chain
orientation. Thus, the present simulation results are starkly
inconsistent with the Rouse retraction dynamics of the tube
model and question the apparent agreement between the
theory and experiment concerning the nonlinear rheology of
entangled polymers.
The present work is only the first step toward probing a

realistic theoretical framework for dynamics of entangled
polymers under large deformation. There are several key
questions that remain to be addressed. One of the most
important is how evolution of chain conformation and
entanglements produce the corresponding stress, i.e., what
the true molecular picture is for stress overshoot upon startup
shear at various rates for both WiR < 1 and WiR > 1, and what
molecular processes give rise to the strain softening during
stress relaxation from a large step strain. We will take up these
questions in forthcoming investigations.
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tions of the tube model, the mean-square radius of gyration and
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Figure 4. Average number of entanglements as a function of (a) shear
strain γ or (b) time t/τR during startup shear. Note that ⟨Z0⟩ and ⟨Z⟩
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